Role of the flagellum in cell-cycle-dependent expression of bacteriophage receptor activity in Caulobacter crescentus.

نویسندگان

  • R A Bender
  • C M Refson
  • E A O'Neill
چکیده

The rate of adsorption of Caulobacter bacteriophage phi CbK to Caulobacter crescentus is dependent on the structural integrity of the flagellum. Cells lacking part or all of the flagellum because of either mutation or mechanical shear were defective in adsorption, and the extent of the defect in adsorption reflected the amount of flagellar structure missing. Maximal adsorption rates were also dependent on cellular motility and energy metabolism, since adsorption to cells with paralyzed flagella was slower than adsorption to motile cells and inhibition of cellular energy metabolism with azide also reduced adsorption rates, even for nonmotile cells. Nevertheless, the flagellum is not the receptor for phage phi CbK, since flagellumless mutants adsorbed phi CbK at detectable rates. While some portion of the fluctuation in the phi CbK receptor activity during the C. crescentus cell cycle can be ascribed to the periodicity of flagellar loss and reappearance, the phage receptor activity remaining in flagellumless mutants was periodic in the cell cycle. Therefore, the periodic expression of phage receptor activity is an intrinsic property of the C. crescentus cell cycle, although the amplitude of the oscillation may be altered by the periodic expression of flagellar motility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cellular differentiation in Caulobacter crescentus.

In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells rei...

متن کامل

Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus.

In the Caulobacter crescentus predivisional cell, class III and IV flagellar genes, encoding the extracytoplasmic components of the flagellum, are transcribed in the nascent swarmer compartment. This asymmetric expression pattern is attributable to the compartmentalized activity of the sigma54-dependent transcriptional activator FlbD. Additionally, these temporally transcribed flagellar promote...

متن کامل

Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus.

2D and 3D cryo-electron microscopy, together with adsorption kinetics assays of Cb13 and CbK phage-infected Caulobacter crescentus, provides insight into the mechanisms of infection. Cb13 and CbK actively interact with the flagellum and subsequently attach to receptors on the cell pole. We present evidence that the first interaction of the phage with the bacterial flagellum takes place through ...

متن کامل

FlbT couples flagellum assembly to gene expression in Caulobacter crescentus.

The biogenesis of the polar flagellum of Caulobacter crescentus is regulated by the cell cycle as well as by a trans-acting regulatory hierarchy that functions to couple flagellum assembly to gene expression. The assembly of early flagellar structures (MS ring, switch, and flagellum-specific secretory system) is required for the transcription of class III genes, which encode the remainder of th...

متن کامل

Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.

The transcription factor FlbD regulates the temporal and spatial transcription of flagellar genes in the bacterium Caulobacter crescentus. Activation of FlbD requires cell cycle progression and the assembly of an early (class II) flagellum structure. In this report, we identify 20 independent gain-of-function mutations in flbD that relieve regulation by flagellar assembly. One of these, flbD-12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 171 2  شماره 

صفحات  -

تاریخ انتشار 1989